Investigadores de la Universidad de Oviedo aportan nuevos datos sobre la relación entre el efecto invernadero y la subida de las temperaturas en un estudio que publica la revista Nature.
El trabajo ofrece evidencias de un vínculo muy estrecho entre el descenso en el CO2 atmosférico y los enfriamientos y glaciaciones en el pasado geológico, en un periodo sobre el que los científicos tenían dudas: entre 10 y 2 millones de años atrás. Este hallazgo supone la primera constatación de que el efecto invernadero trajo consigo una subida de las temperaturas en este periodo más cálido que el actual y en el rango de concentraciones de CO2 esperado para finales de este siglo.
La investigación se llevó a cabo analizando el historial de la adaptación de las algas marinas a niveles crecientes de CO2, que se produce mucho más rápido de lo que hasta ahora se pensaba. El estudio, firmado por las investigadoras Clara Bolton y Heather Stoll, del departamento de Geología de la Universidad de Oviedo, ha sido financiado por el Consejo de Investigación Europeo (European Research Council, ERC).
La concentración de CO2 en la atmósfera es clave para el clima, porque regula el efecto invernadero. Resulta esencial para todas las plantas –tanto terrestres como marinas– como factor indispensable para la fotosíntesis. Cuando hay poco CO2 la fotosíntesis puede ser más lenta, por lo que las plantas han desarrollado mecanismos para compensar este déficit. Así, muchas algas marinas emplean y transportan recursos de carbono extra, más abundantes en el océano, como bicarbonato. Sin embargo, esta estrategia requiere más energía y nutrientes, por lo que las algas dejan de usarla cuando la concentración de CO2 aumenta.
Un nuevo indicador ha permitido averiguar en qué momento del pasado las algas dejaron de utilizar uno de estos recursos extra de carbono. El resultado aclara tanto la adaptación de las algas a distintas concentraciones de CO2, como el historial de cambios en el CO2 atmosférico. Dado que algunas algas fabrican conchas microscópicas que se acumulan en el fondo del mar –al igual que las conchas en la orilla– es posible emplear estas conchas fósiles de las algas para averiguar cómo se adaptaron a los niveles de CO2 existentes mientras vivían.
Este nuevo modelo sobre cómo las células algares transportan carbono revela que hay un cambio en la composición química de la concha cuando la célula tiene que emplear recursos extra como el bicarbonato para crecer. Midiendo la composición de las conchas fósiles que han crecido en distintos intervalos de tiempo durante los últimos 60 millones de años, se evidencia que las algas empezaron a depender mucho de las fuentes de carbono extra en un periodo relativamente reciente, hace entre 7 y 5 millones de años.
Historia del CO2 atmosférico
El hecho de que la adaptación se produzca en este periodo es sorprendente. Hasta la Revolución Industrial, el clima llevaba enfriándose decenas de millones de años, con casquetes de hielo formándose primero en la Antártida hace 33 millones de años y más tarde en Groenlandia hace 2.5 millones de años. Este enfriamiento estuvo generalmente asociado a una debilitación gradual del efecto invernadero mientras el CO2 fue eliminado de la atmósfera por procesos naturales. Por ejemplo, hay evidencias de un descenso abrupto en CO2 hace 33 millones de años, coincidiendo con la glaciación de la Antártida.
Sin embargo, la historia del CO2 atmosférico en los últimos 10 millones de años ha sido muy polémica, con varios estudios indicando un nivel bajo y constante de CO2 a pesar de una tendencia climática general de enfriamiento progresivo.»Los resultados del nuevo estudio indican que el CO2 estaba en descenso y cruzó un umbral crítico hace aproximadamente 7 millones de años, un resultado coherente con las evidencias del enfriamiento del océano», afirma Heather Stoll. Hasta ahora las únicas medidas directas del CO2 del pasado se referían a los últimos 800,000 años y demostraban una relación muy estrecha entre temperatura y el CO2, pero en periodos más fríos que el nuestro. Para periodos previos había que emplear indicadores indirectos.
El estudio, que se realizó a partir de sedimentos obtenidos en el Caribe y en el Atlántico Sur, también indica que las algas se adaptan en niveles de CO2 en torno a 500 partes por millón. Según explica Clara Bolton, «estos niveles podrían alcanzarse a finales de este siglo debido al uso de combustibles fósiles, y tal adaptación probablemente tendrá consecuencias para los ecosistemas marinos en el futuro».
Un proyecto financiado por el ERC
Este estudio cuenta con una ayuda Starting grant del Consejo Europeo de Investigación (ERC, por sus siglas en inglés)) otorgado a Heather Stoll en 2009 para su proyecto «PACE». Según Stoll, la financiación del ERC ha sido fundamental en el nuevo descubrimiento: «La ayuda del ERC fue la culminación de un sueño científico de 10 años. Observé el concepto para el nuevo indicador hace 10 años y lo presenté en un seminario internacional sobre biocomplejidad. Pero los pasos que podía dar eran muy pequeños hasta que la ERC se involucró y me permitió poner en marcha un equipo de investigación especializado en un entorno realmente multidisciplinar. La financiación me ayudó a reunir conocimientos biológicos y geológicos para comprender ambos».
Referencia bibliográfica:
Bolton, C.T. y H.M. Stoll. «Late Miocene threshold response of marine algae to carbon dioxide limitation», Nature.29 de agosto de 2013.
Las algas cocolitoforidos cubren sus células con placas llamadas cocolitos. El estudio emplea la relación de dos isótopos de carbono en los cocolitos para averiguar cómo la célula se adaptaba a cambios en el CO2 atmosférico. / Uniovi