La resistencia y elasticidad de las telarañas es bien conocida, pero científicos de la Universidad de Estado de Iowa (EE UU) anunciaron en 2012 que, además, es un excelente conductor térmico. En la seda de una araña americana (Nephila clavipes) lograron medir una difusividad térmica tan alta como la de los mejores metales: 70 mm2/s.
«Nuestros descubrimientos revolucionarán el pensamiento convencional sobre la baja conductividad térmica de los materiales biológicos», decía entonces el autor principal de aquel trabajo, Xinwei Wang.
Pero el sorprendente resultado animó a un equipo de físicos de la Universidad del País Vasco (UPV/EHU) a repetir el experimento en su laboratorio de la Escuela Superior de Ingeniería de Bilbao, que cuenta con dispositivos capaces de analizar cómo se transfiere el calor en filamentos muy finos, de unos pocos micrómetros.
“Cogimos hilos de la araña de jardín (Araneus diadmatus), una de las más comunes en Europa, y analizamos cómo decaía la temperatura en función de la distancia al punto donde incidía un haz láser”, señala Agustín Salazar, catedrático de la UPV/EHU y autor principal del estudio.
“El valor de la difusividad térmica que obtuvimos para la seda del arácnido fue de 0,2 mm2/s, unas 300 veces menor que el dato anunciado por los investigadores estadounidenses”, subraya Salazar, cuyo equipo ha publicado los nuevos resultados en la revista Materials Letters.
El investigador recuerda que la seda de araña está formada por cadenas de aminoácidos –glicina y alanina sobre todo– que, como cualquier material biológico, es un mal conductor del calor. También descarta que la discrepancia en los resultados se deba al hecho de haber trabajado con dos especies de arañas distintas: “Es poco probable que las diferencias tan enormes de difusividad térmica se deban a esto”.
“En realidad –añade– no es de extrañar que esta seda sea más un aislante térmico que un buen conductor, porque en millones de años de evolución se han favorecido las propiedades físicas de los materiales que suponen una ventaja para la araña y su tela, como la resistencia, la elasticidad y el aislamiento térmico”.
Los científicos españoles han empleado para sus análisis “un método limpio y sencillo basado en la termografía infrarroja” y consideran que el de sus colegas de la universidad estadounidense, con los que Sinc ha tratado de contactar sin éxito, “no es muy fiable”.
Según Salazar, “el equipo americano utiliza un procesado complejísimo para eliminar las pérdidas de calor en sus datos experimentales, así como la influencia de los recubrimientos y el efecto de la longitud de filamentos –ellos trabajan con hilos de 1 mm de longitud y nosotros con un centímetro o más–”.
Pero más allá de los resultados concretos del estudio, el investigador destaca la relevancia de este tipo de trabajos para recordar lo importante que es en ciencia reproducir los experimentos: “Es un aspecto que a menudo olvida la prensa generalista, que anuncia con grandes titulares descubrimientos llamativos como si fueran una verdad incontrovertible y antes de que sean corroborados por otros investigadores”.
Referencias bibliográficas:
Raquel Fuente, Arantza Mendioroz, Agustín Salazar. “Revising the exceptionally high termal diffusivity of spider silk”. Materials Letters 114: 1–3, enero de 2014.
Xiaopeng Huang, Guoqing Liu, Xinwei Wang. “New Secrets of Spider Silk: Exceptionally High Thermal Conductivity and Its Abnormal Change under Stretching”. Advanced Materials 24: 1482–1486, 2012.