El Centro de Láseres Pulsados (CLPU), el Servicio General de Espectrometría de Masas de NUCLEUS de la Universidad de Salamanca y la empresa Iberdrola Ingeniería presentaron un dispositivo capaz de eliminar casi al 100% las emisiones de gases contaminantes a la atmósfera, principalmente CO2, por parte de las industrias, mediante radiación láser, el sistema ioniza los gases contaminantes y los extrae a través de campos eléctricos y magnéticos.
El dispositivo puede ser revolucionario en el mundo, ya que aborda un concepto distinto para afrontar el problema que causan las emisiones de CO2, gas de efecto invernadero relacionado con el cambio climático. Evitar que llegue a la atmósfera es un gran reto científico y tecnológico, especialmente en el campo de la producción de energía eléctrica por parte de centrales térmicas, pero también en todo tipo de industrias que generan emisiones.
De hecho, los niveles de CO2 “siguen aumentando de forma descontrolada”, señala en declaraciones recogidas por DiCYT Carlos Padilla, responsable de Iberdrola Ingeniería y director del proyecto. Las tres opciones para abordarlo son la captura de CO2, la apuesta por las energías renovables y el aumento de la eficiencia energética. Este proyecto se enmarca dentro de la primera y es un sistema más barato que otras vías que se han explorado en este campo.
|
Para eliminar CO2 se puede actuar antes, durante o después de la combustión y el sistema patentado por el proyecto SIGMA puede hacerlo en cualquiera de estos momentos. Para lograr actuar sobre un gas en concreto, se tienen en cuenta sus características físico-químicas, por ejemplo, el tamaño de las moléculas que lo forman. En cualquier caso, al estar constituido por átomos, los electrones de estos “son susceptibles de ser arrancados o introducidos” y de esta forma, es decir, mediante ionización, se consiguen separar los distintos componentes. Para ello hay que canalizar los gases por un conducto en el que se lleva a cabo la ionización y la separación, un proceso que se logra gracias a la tecnología láser.
La parte de la ionización ha sido abordada principalmente por el científico del CLPU Álvaro Peralta, mientras que la separación se logra mediante la espectrometría de masas, especialidad del servicio que dirige César Raposo en NUCLEUS, la Plataforma de Apoyo a la Investigación de la Universidad de Salamanca.
Fotoionización
La primera parte de este proceso es concretamente una “fotoionización”, puesto que se trata de una ionización por láser. Los átomos, por pérdida o ganancia de electrones, adquieren carga eléctrica cuando el láser actúa sobre ellos y una vez que se ha logrado esta ionización las técnicas de espectrometría de masas pueden actuar sobre estas moléculas. Se trata de una ionización “eficiente y selectiva”, porque el principal objetivo es actuar sobre el CO2.
¿Cómo se consigue realizar esta ionización de las moléculas de CO2? La clave está en que el láser del CLPU actúa con una gran potencia eléctrica en un tiempo extremadamente corto. En concreto, es capaz de llegar a los 100.000 MW (casi equivalente a la potencia eléctrica instalada en España) en el rango de los femtosegundos (una unidad de medida del tiempo que es la milbillonésima parte de un segundo). “Esa duración tan pequeña es lo que permite concentrar tanta la energía”, señala Álvaro Peralta.
Un reto para la espectrometría de masas
Los investigadores, quenes ya solictiaron una patente en España para un primer prototipo, que es el resultado del proyecto de I+D SIGMA, que comenzó hace dos años, explicaron que a partir de la ionización, la espectrometría de masas logra separar los distintos componentes del gas. Sin embargo, esto ha supuesto un gran reto científico y tecnológico porque hasta ahora estas técnicas sólo han trabajado con cantidades de materia muy pequeñas y, de hecho, una de sus grandes utilidades es el análisis de compuestos químicos a partir de muestras diminutas. En este proyecto, por el contrario, el objetivo es llegar a procesar grandes cantidades de gases contaminantes, una posibilidad “sin precedentes en la literatura científica” sobre espectrometría de masas, ha explicado César Raposo.
Otro problema es que, incluso salvando la dificultad anterior, el proceso podría requerir un enorme gasto energético que no compensara las emisiones de CO2 a la atmósfera que se pretenden evitar.
Los dos problemas se han solventado apostando por la separación electrostática por láser, que permite redireccionar las moléculas ionizadas “sin que choquen con otras partículas”. Conseguir que las partículas circulen en la dirección adecuada a presión atmosférica y en los tiempos adecuados para realizar el proceso resulta una operación extremadamente compleja que los científicos del proyecto aún tratan de optimizar.
Productos para otras industrias
La separación por espectrometría de masas hace que se generen nuevas moléculas, por ejemplo, óxido de azufre u óxido de nitrógeno, que pueden ser empleadas por la industria química o como fertilizantes. Es decir, que además de solucionar el grave problema de emisión de gases contaminantes, se pueden generar productos derivados de gran valor. Asimismo, parte de los contaminantes iniciales quedan convertidos durante el proceso en gases inertes, de manera que su emisión no perturba la composición de la atmósfera.
El futuro dirá si el sistema puede ser rentable para las empresas, pero sus promotores confían en que suponga un gran ahorro de costes, especialmente para las industrias más grandes, que tienen que pagar tasas por emisiones contaminantes.
Oportunidad tecnológica para España
Luis Roso, director del CLPU, ha expresado su deseo de que este proyecto sirva para impulsar nuevos sectores económicos que pueden apoyarse en la patente para crear la tecnología que haga realidad la posibilidad de eliminar por completo el CO2 que emiten las industrias. “España tiene la oportunidad de desarrollar tecnología láser”, ha asegurado.
La iniciativa en la que se enmarca todo este trabajo se puso en marcha en 2011 con un presupuesto de 2’5 millones de euros y forma parte de los proyectos INNPACTO del Ministerio de Economía y Competitividad. Asimismo, es una de las grandes apuestas de la Cátedra Iberdrola, que desarrollan la Universidad de Salamanca y la empresa eléctrica. Aunque el proyecto finaliza dentro de un año, a partir de ahí se implementará de forma piloto durante otros tres años y el objetivo de sus promotores es que en un plazo de cuatro años se pueda comercializar a pequeña escala, para industrias pequeñas.
Si el sistema demuestra su utilidad y rentabilidad pasaría después a las grandes centrales térmicas de producción de energía eléctrica y puede convertirse en una revolución tecnológica que acabe con uno de los grandes problemas que forman parte del desafío que tiene el hombre frente al cambio climático.