Tras analizar los datos de un nuevo e inmenso sondeo de galaxias con el telescopio de rastreo del VLT de ESO, en Chile, los resultados sugieren que la materia oscura puede ser menos densa y estar distribuida de forma más uniforme en el espacio de lo que se pensaba. Un equipo internacional ha utilizado los datos del sondeo KiDS (Kilo Degree Survey) para estudiar cómo la luz de unos quince millones de galaxias distantes se ve afectada por la influencia gravitacional de la materia en las escalas más grandes del universo. Los resultados parecen estar en desacuerdo con los anteriores resultados del satélite Planck.
Hendrik Hildebrandt, del Instituto Argelander de Astronomía, en Bonn (Alemania) y Massimo Viola, del Observatorio de Leiden (Países Bajos) han dirigido a un equipo de astrónomos [1] de instituciones de todo el mundo que han procesado imágenes del sondeo KiDS (Kilo Degree Survey), realizado con el VST (VLT Survey Telescope) de ESO, en Chile. Para su análisis, utilizaron imágenes del sondeo de cinco zonas del cielo que cubrían un área total de alrededor de 2.200 veces el tamaño de la Luna llena [2] y que contiene unos quince millones de galaxias.
Explotando la excelente calidad de imagen de la que disfruta el VST en Paranal, y utilizando innovadores programas informáticos, el equipo fue capaz de llevar a cabo una de las mediciones más precisas jamás realizadas de un efecto conocido como “esquilado cósmico” (en inglés, cosmic shear). Se trata de una variante sutil de la lente gravitacional débil, en la que la luz emitida por galaxias lejanas es ligeramente deformada por el efecto gravitacional de grandes cantidades de materia, tales como cúmulos de galaxias.
En ese “esquilado cósmico”, no son los cúmulos de galaxias, sino las estructuras a gran escala del universo las que deforman la luz, que produce un efecto aún más pequeño. Se necesitan sondeos muy anchos y profundos, como KiDS, para garantizar que la débil señal del “esquilado cósmico” sea lo suficientemente fuerte como para ser medida y los astrónomos puedan utilizarla para mapear la distribución de la materia gravitante. Este estudio se ha hecho con el área total de cielo más grande jamás mapeada con esta técnica.
Curiosamente, los resultados de sus análisis parecen ser incompatibles con las deducciones de los resultados del satélite Planck de la Agencia Espacial Europea, una misión espacial cuyo objetivo fue estudiar las propiedades fundamentales del universo. En particular, las medidas del equipo de KiDS de cuán grumosa es la materia en todo el universo — un parámetro cosmológico fundamental — es significativamente menor que el valor derivado de los datos de Planck [3].
Massimo Viola, explica: «este último resultado indica que la materia oscura de la red cósmica, que representa una cuarta parte del contenido del universo, es menos grumosa de lo que previamente creíamos«.
La materia oscura sigue siendo esquiva en su detección, su presencia sólo se deduce a partir de sus efectos gravitatorios. Actualmente, este tipo de estudios son la mejor herramienta para determinar la forma, escala y distribución de esta materia invisible.
El resultado sorpresa de este estudio también tiene implicaciones para la comprensión del universo en toda su amplitud y para entender cómo ha evolucionado durante sus casi 14.000 millones de años de historia. Un resultado de este tipo, aparentemente en desacuerdo con los resultados previamente establecidos por Planck, significa que ahora los astrónomos tendrán que reformular su comprensión de algunos aspectos fundamentales del desarrollo del universo.
Para Hendrik Hildebrandt, «nuestros hallazgos ayudarán a refinar nuestros modelos teóricos sobre cómo ha crecido el universo desde sus inicios hasta la actualidad«.
El análisis de KiDS de los datos del VST es un paso importante, pero se espera que los futuros telescopios hagan sondeos incluso más amplios y profundos del cielo.
La colíder del estudio, Catherine Heymans, de la Universidad de Edimburgo (Reino Unido), añade: «Desvelar lo que ha ocurrido desde el Big Bang es un reto complejo, pero si seguimos estudiando los cielos distantes podremos construir una imagen de cómo ha evolucionado nuestro universo actual«.
“Por el momento, vemos una discrepancia interesante con la cosmología de Planck. Las futuras misiones, como el satélite Euclides y el telescopio LSST (Large Synoptic Survey Telescope), nos permitirán repetir estas mediciones y comprender mejor qué es lo que realmente nos está diciendo el universo”, concluye Konrad Kuijken (Observatorio de Leiden, Países Bajos), investigador principal del sondeo KiDS.
Notas
[1] El equipo internacional de investigadores de KiDS incluye a científicos de Alemania, Países Bajos, Reino Unido, Australia, Italia, Malta y Canadá.
[2] Esto corresponde a cerca de 450 grados cuadrados o un poco más del 1% de todo el cielo.
[3] El parámetro medido se llama S8. Su valor es una combinación del tamaño de las fluctuaciones de densidad y la densidad media de una sección del universo. Las fluctuaciones grandes en partes del universo con densidades más bajas tienen un efecto similar al de pequeñas fluctuaciones de amplitud en las regiones más densas y no se pueden distinguir unas de otras a través de observaciones de lente gravitacional débil. El 8 se refiere a un tamaño de celda de 8 megapársecs, utilizado por convención en este tipo de estudios.
Información adicional
Este trabajo de investigación se ha presentado en el artículo científico titulado: “KiDS-450: Cosmological parameter constraints from tomographic weak gravitational lensing”, por H. Hildebrandt et al., y aparece en la revista Monthly Notices of the Royal Astronomical Society.
El equipo está formado por H. Hildebrandt (Instituto Argelander de Astronomía, Bonn, Alemania); M. Viola (Observatorio de Leiden, Universidad de Leiden, Leiden, Países Bajos); C. Heymans (Instituto de Astronomía, Universidad de Edimburgo, Edimburgo, Reino Unido); S. Joudaki (Centro der Astrofísica & Supercomputación, Universidad Tecnológica Swinburne, Hawthorn, Australia); K. Kuijken (Observatorio de Leiden, Universidad de Leiden, Leiden, Países Bajos); C. Blake (Centro der Astrofísica & Supercomputación, Universidad Tecnológica Swinburne, Hawthorn, Australia); T. Erben (Instituto Argelander de Astronomía, Bonn, Alemania); B. Joachimi (University College London, Londres, Reino Unido); D Klaes (Instituto Argelander de Astronomía, Bonn, Alemania); L. Miller (Departamento de Física, Universidad de Oxford, Oxford, Reino Unido); C.B. Morrison (Instituto Argelander de Astronomía, Bonn, Alemania); R. Nakajima (Instituto Argelander de Astronomía, Bonn, Alemania);, G. Verdoes Kleijn (Instituto de Astronomía Kapteyn, Universidad de Groningen, Groningen, Países Bajos); A. Amon (Instituto de Astronomía, Universidad de Edimburgo, Edimburgo, Reino Unido); A. Choi (Instituto de Astronomía, Universidad de Edimburgo, Edimburgo, Reino Unido); G. Covone (Departamento de Física, Universidad de Nápoles Federico II, Nápoles, Italia); J.T.A. de Jong (Observatorio de Leiden, Universidad de Leiden, Leiden, Países Bajos); A. Dvornik (Observatorio de Leiden, Universidad de Leiden, Leiden, Países Bajos); I. Fenech Conti (Instituto de Ciencias Espaciales y Astronomía (ISSA), Universidad de Malta, Msida, Malta; Departamento de Física, Universidad de Malta, Msida, Malta); A. Grado (INAF – Observatorio Astronómico de Capodimonte, Nápoles, Italia); J. Harnois-Déraps (Instituto de Astronomía, Universidad de Edimburgo, Edimburgo, Reino Unido; Departamento de Física y Astronomía, Universidad British Columbia, Vancouver, Canadá); R. Herbonnet (Observatorio de Leiden, Universidad de Leiden, Leiden, Países Bajos); H. Hoekstra (Observatorio de Leiden, Universidad de Leiden, Leiden, Países Bajos); F. Köhlinger (Observatorio de Leiden, Universidad de Leiden, Leiden, Países Bajos); J. McFarland (Instituto de Astronomía Kapteyn, Universidad de Groningen, Groningen, Países Bajos); A. Mead (Departamento de Física y Astronomía, Universidad British Columbia, Vancouver, Canadá); J. Merten (Departamento de Física, Universidad de Oxford, Oxford, Reino Unido); N. Napolitano (INAF – Observatorio Astronómico de Capodimonte, Nápoles, Italia); J.A. Peacock (Instituto de Astronomía, Universidad de Edimburgo, Edimburgo, Reino Unido); M. Radovich (INAF – Observatorio Astronómico de Padua, Padua, Italia); P. Schneider (Instituto Argelander de Astronomía, Bonn, Alemania); P. Simon (Instituto Argelander de Astronomía, Bonn, Alemania); E.A. Valentijn (Instituto de Astronomía Kapteyn, Universidad de Groningen, Groningen, Países Bajos); J.L. van den Busch (Instituto Argelander de Astronomía, Bonn, Alemania); E. van Uitert (University College London, Londres, Reino Unido); y L. van Waerbeke (Departamento de Física y Astronomía, Universidad British Columbia, Vancouver, Canadá).