El grupo de investigación Computational Intelligence Group (CIG) de la Escuela Técnica Superior de Ingenieros Informáticos de la Universidad Politécnica de Madrid (UPM), en colaboración con una estudiante de veterinaria de la Universidad Alfonso X El Sabio, y el Departamento de Etología de la Eötvös Loránd University de Budapest (Hungría) ha llevado a cabo una investigación del comportamiento canino que demuestra que el sexo, la edad y el contexto en el que se encuentra el perro, así como el reconocimiento individual del mismo, pueden efectuarse con un alto porcentaje de acierto por medio de métodos estadístico-computacionales de reconocimiento de patrones aplicados a sus ladridos. Estos resultados podrían resultar de gran ayuda para organizaciones que necesitan identificar el estado del perro para el desarrollo de algunas tareas.
La comunicación canina ha sido un tema de investigación en etología durante la última década. La mayoría de los trabajos se han centrado en estudiar cómo los canes son capaces de entender diferentes formas de comunicación humana, por ejemplo a través de la visualización de gestos y el reconocimiento de la voz humana. La investigación en la que ha participado el CIG de la UPM ha tenido como objetivo interpretar las señales acústicas obtenidas a partir de los ladridos de los perros cuando son sometidos a diferentes situaciones. Dicha interpretación se efectúa desarrollando un sistema computacional basado en modelización estadística, que ha demostrado ser capaz de reconocer diferentes características propias del perro (sexo, edad, individuo, situación en la que se encuentra, etcétera).
Los experimentos se llevaron a cabo en Budapest con ocho ejemplares (tres machos y cinco hembras) de la raza mudi, originaria de Hungría y que se utiliza como perro pastor. De cada uno de los ocho perros (con edades comprendidas entre uno y diez años) se registraron 100 ladridos. El total de 800 ladridos se obtuvo al situar al perro en siete situaciones distintas: (a) solo, en la cual el dueño del perro ató al mismo a un árbol; (b) jugando con un balón; (c) peleando, para la cual un humano actuó imitando un ataque al dueño del perro; (d) recibiendo su ración de comida; (e) jugando con el dueño; (f) en compañía de una persona que resultaba extraña para el perro; y (g) preparándose para salir de casa con el dueño. Cada uno de los 800 ladridos se caracterizó a partir de 29 mediciones acústicas.
Usando los distintos modelos computacionales obtenidos de los datos recogidos en la experimentación, se pudo reconocer correctamente el sexo del perro el 85,13% de las veces, mientras que la edad del mismo (recodificada como joven, adulto y viejo) se clasificó sin fallos en el 80,25% de las ocasiones. La tarea de identificar, de entre las siete posibles, la situación en la que se encontraba el animal se realizó con éxito el 55,50% de las veces, mientras que el reconocimiento (de entre los 8 que participaron en el estudio) del ejemplar mudi que se encontraba ladrando se hizo correctamente en el 67,63% de las ocasiones.
Este trabajo pone de manifiesto la riqueza y la relevancia biológica de la información contenida en los ladridos de los perros y abre nuevas posibilidades en la investigación aplicada. Por ejemplo, la evaluación del comportamiento canino es de gran importancia para distintas organizaciones, para las cuales el desarrollo de software con el que identificar el miedo, la angustia y el nivel de agresividad de un perro puede ser de gran ayuda.
(Universidad Politécnica de Madrid)