Experimento Belle II dentro del acelerador de partículas japonés SuperKEKB- KEK, N. Toge

Experimento Belle II dentro del acelerador de partículas japonés SuperKEKB- KEK, N. Toge


Los electrones y sus antipartículas, los positrones (o antielectrones), acelerados y almacenados por el acelerador SuperKEKB colisionaron por primera vez el 26 de abril de 2018 a las 00:38 horas en Tsukuba (Japón).

El detector Belle II, situado en el punto donde se producen las colisiones, registró la aniquilación que se produce entre los haces de electrones y positrones, y que produce otras partículas incluyendo parejas de quarks y antiquarks beauty (‘belleza’ o b), uno de los más pesados.

Fueron las primeras colisiones que se registraron en el acelerador de la Organización para la Investigación en Física de Altas Energías con Aceleradores (KEK) de Japón desde que la máquina anterior (KEKB) finalizase sus operaciones en 2010.

El detector Belle II se diseñó y construyó por una colaboración internacional de más de 750 investigadores de 25 países. Comparado con su predecesor (Belle), el nuevo detector mejoró enormemente su capacidad, y pudo detectar y reconstruir eventos a una velocidad mucho mayor, ya que SuperKEKB tendrá 40 veces más luminosidad (medida del número de colisiones).

Los científicos esperaban obtener 50,000 millones de eventos de colisiones entre mesones B y anti-B (partículas compuestas por un quark y un antiquark b), 50 veces más que el total de datos obtenido en el anterior proyecto KEKB/Belle que funcionó durante 10 años.

SuperKEKB y el detector Belle II fueron diseñados para buscar ‘nueva física’ más allá del modelo estándar, la teoría que describe las partículas elementales que componen la materia visible del universo y sus interacciones. Para ello se les programó que pudiesen medir desintegraciones inusuales de partículas elementales como el quark beauty, el quark charm (‘encantado’) o los leptones tau, partícula emparentada con el electrón.

¿Por qué domina la materia sobre la antimateria en el universo?

Belle II entre sus actividades contempló la búsqueda de evidencias de la existencia de nuevas partículas que pudieran explicar por qué el universo está dominado por la materia y no por la antimateria, cuando debieron producirse en iguales cantidades tras el Big Bang, y responder otras cuestiones fundamentales para el conocimiento del cosmos.

El acelerador SuperKEKB comenzó a funcionar en marzo de 2018 con un anillo para ‘amortiguar’ los positrones, un complejo sistema de imanes superconductores que focalizan los haces y con el nuevo detector Belle II situado en el punto donde interactúan los haces de electrones y positrones.

superkekb

Acelerador SuperKEKB. / KEK

El primer haz de electrones fue almacenado en el anillo principal de alta energía del acelerador el 21 de marzo, y el de positrones se almacenó en el anillo de baja energía el 31. Desde entonces se realizó el proceso de ajuste para que los dos haces chocaran en el centro del detector Belle II, hecho que se dio el 26 de abril de 2018 y que marcó el punto de salida para la toma de datos.

Romper el récord de colisiones por segundo: la luminosidad

A diferencia del gran colisionador de hadrones (LHC) del CERN cerca de Ginebra (Suiza), el mayor y más potente acelerador de protones del mundo, SuperKEKB está diseñado para ser el acelerador con mayor luminosidad, una medida del número de colisiones potenciales en un acelerador por unidad de superficie en un periodo de tiempo.

SuperKEKB lidera lo que se llama ‘frontera de la luminosidad’, y espera batir el récord de luminosidad logrado por su antecesor KEKB en 2009

Así, SuperKEKB lideró al inaugurarse lo que se llama ‘frontera de la luminosidad’, con la expectativa de batir el récord de luminosidad logrado por su antecesor KEKB en 2009.

Las primeras colisiones en el acelerador SuperKEKB, y el arranque del experimento Belle II se dieron tras más de 7 años de construcción y preparación por parte de muchos investigadores, ingenieros y estudiantes dedicados y con talento.

esquema_superkekb

SuperKEKB es un acelerador de partículas de 3 km de circunferencia situado en Tsukuba (Japón). / KEK

El acelerador SuperKEKB en cinco puntos

1. Es un acelerador de partículas de 3 kilómetros de circunferencia ubicado en las instalaciones de la Organización para la Investigación en Física de Altas Energías con Aceleradores (KEK) en Tsukuba, en la prefectura de Ibaraki (costa este de Japón).

2. Consta de dos anillos: uno para un haz de electrones de alta energía (7 gigaelectronvoltios) llamado HER, y otro para un haz de positrones (la antipartícula del electrón) de baja energía (4 gigaelectronvoltios), llamado LER. Para comparar, los haces de protones del Gran Colisionador de Hadrones (LHC) del CERN se aceleran a energías de 7 teraelectronvoltios.

3. Estos haces colisionan a una energía total de 10,57 GeV/c2. Como expresa la famosa ecuación de Einstein, la energía se convierte en masa produciendo nuevas partículas distintas a los electrones y positrones que chocaron entre sí. En el LHC, las colisiones se producen a una energía de 13 teraelectronvoltios.

4. SuperKEKB es una ‘factoría de Bs’, un acelerador especializado en producir mesones B, partículas compuestas por quarks y antiquarks. Este tipo de partículas se utiliza en ‘física del sabor’, para conocer la formación de las familias de partículas que existen, y para estudiar las diferencias que existen entre materia y antimateria, la llamada ‘simetría CP’. Uno de los científicos de KEK, Makoto Kobayashi, fue uno de los ganadores del Nobel de Física en 2008 por sus estudios sobre la ruptura de esta simetría.

5. En SuperKEKB se espera alcanzar la mayor luminosidad obtenida en un acelerador de partículas. La luminosidad es una medida del número de colisiones por unidad de tiempo. El objetivo de SuperKEKB es 8×1035 cm−2s−1, que se obtendría a partir del año 2022. Su antecesor, KEKB ostenta aún el récord de luminosidad con 2,11×1034 cm−2s−1 (junio de 2009). El LHC alcanzó a finales de 2017 una luminosidad de 2,06 x 1034cm-2s-1, aunque prepara una mejora a partir de 2025, el LHC de Alta Luminosidad (High Luminosity LHC).

Y otros cinco puntos sobre el experimento Belle II

1. El experimento Belle II se ubica en una de las cuatro zonas experimentales del acelerador SuperKEKB. Tiene 10 metros de alto y 10 de ancho, y un peso de 1.500 toneladas. En su interior chocan los paquetes de electrones y positrones acelerados por SuperKEKB. Varios subdetectores se sitúan alrededor del tubo donde se producen las colisiones para identificar las partículas resultantes.

2. Los detectores más cercanos a las colisiones son el detector de vértices (SVD) y el detector de píxeles de silicio (PXD), que se sirven para reconstruir el origen y trayectoria de los mesones B, que se desintegran en picosegundos (una billonésima parte de segundo). Son por tanto, dispositivos extremamente precisos y rápidos.

3. Para identificar el tipo de partículas producido en las colisiones se usan otros detectores como TOP y ARICH, que miden la luz emitida por partículas cargadas. Otros dispositivos, llamados ‘calorímetros electromagnéticos’, miden la energía depositada por partículas que interaccionan electromagnéticamente (electrones, positrones y fotones). Toda esta información se recopila en nanosegundos y, mediante un software de adquisición de datos, se seleccionan los eventos potencialmente más interesantes para su posterior análisis. Se espera que Belle II genere decenas de petabytes de datos cada año, que se almacenarán mediante tecnologías GRID, como el LHC, y Cloud.

4. El principal objetivo científico de Belle II es estudiar las diferencias entre materia y antimateria. En el origen del Universo se debieron crear idénticas cantidades de ambas (la antimateria es una réplica de la materia con carga opuesta), pero todo lo que vemos ahora está hecho de materia… Averiguar por qué la naturaleza prefirió una sobre la otra es uno de los grandes retos científicos actuales.

5. El experimento Belle II es una colaboración científica internacional compuesta por más de 500 investigadores y técnicos de 97 instituciones de 23 países, incluida España. Por parte española participan el Instituto de Física Corpuscular (IFIC, centro mixto CSIC-Universitat de València), el Instituto de Física de Cantabria (IFCA, centro mixto CSIC-Universidad de Cantabria) y el Instituto Tecnológico de Aragón (ITAINNOVA).

Los comentarios están cerrados.