¿Por qué la expansión del universo es acelerada, en lugar de ser decelerada como predice la teoría de la relatividad? ¿Por qué, al contrario de lo que apuntan los modelos cosmológicos, el universo no presenta singularidades, es decir, zonas del espacio-tiempo donde no se pueden definir magnitudes físicas relacionadas con los campos gravitatorios, como la curvatura?
Son preguntas que tratan de responder Jaime Haro y Jaume Amorós, investigadores de la Universidad Politécnica de Cataluña, en un trabajo que publica esta semana la revistaPhysical Review Letters.
Algunas de las soluciones halladas muestran un universo primitivo en el cual el Big Bang no existe. Evoluciona hasta nuestro universo actual, en el que una pequeña constante cosmológica actúa contra la gravedad para acelerar la expansión del universo. El valor de esta constante es 10-52 m-2.
“Es difícil explicar a un público no experto los resultados de nuestro estudio”, reconoce Haro a SINC, “pero el problema consiste en implementar correctamente la cosmología de Einstein para que coincida con los datos experimentales que poseemos hoy en día”.
En los años 20 del siglo pasado Albert Einstein introdujo un modelo, el teleparalelismo –una geometría descrita con ecuaciones de estado de agregación de la materia–, con el que intentó unificar infructuosamente la gravitación y el electromagnetismo.
“Ese modelo solo funciona para un rango de energía intermedio –ni muy alto ni muy bajo–, por lo que hay que introducir una diminuta constante cosmológica que domina sobre la materia actual, y así el universo puede expandirse de forma acelerada”, dice Haro, “aunque para grandes energías la cosa es mucho más complicada y especulativa”.
En el marco de las teorías ‘teleparalelas’ y asumiendo que el universo está lleno de un fluido regido por una ecuación de estado, los investigadores hacen una propuesta que va en dos direcciones. “La primera es considerar fluidos que a grandes energías no son lineales, con lo cual en este caso se obtiene una constante cosmológica efectiva capaz de evitar la singularidad del Big Bang y simular la época inflacionaria de nuestro universo”, indica el investigador.
«Respecto al segundo caso –prosigue–, consiste en usar la denominada cosmología cuántica de lazos con fluidos lineales. Aquí la no linealidad radica en la propia teoría, ya que la cosmología de Einstein es lineal respecto a la torsión del universo. Con esta teoría también se encuentra un modelo de universo sin singularidades que concuerda con los resultados experimentales que actualmente poseemos».